Departament de Física i Enginyeria Nuclear

Complements de Física A: Fluids i Termodinàmica

Curs 02-03, Primera Avaluació

3 d'Abril 2003

TEORIA

- 1. Describa brevemente todos los tipos de termómetros que conozca, indicando claramente la propiedad termométrica que se utiliza.
- 2. Defina matemáticamente el coeficiente de dilatación térmico, el coeficiente piezométrico y el coeficiente de compresibilidad isotermo. Comente su significado y unidades.
- 3. Enuncie la Ley de Fourier de conduccion térmica. Defina gradiente de temperatura. Escriba la "ley de Ohm" de los circuitos térmicos en estado estacionario y geometría cartesiana.
- 4. Enuncie matemáticamente y comente la Ley de desplazamiento de Wien, la Ley de Stefan-Boltzmann y la Ley de enfriamiento de Newton.
- 5. Describa el experimento de Andrews sobre la compresión y licuación de gases reales. Ayúdese de un diagrama PV (o de Clapeyron).
- 6. Defina temperatura crítica y punto triple.
- 7. Escriba y comente el Primer Principio de la Termodinámica.
- 8. Deduzca, mediante la teoría cinética de los gases, los calores específicos molares a presión y volumen constante de un gas ideal.

PROBLEMAS

- 1. Un matraz esférico de vidrio tiene un radio interior $R_i=19\,\mathrm{cm}$ y un radio exterior $R_e=20\,\mathrm{cm}$. Se llena con 2 kg de hielo a $0^{\mathrm{o}}\,\mathrm{C}$ y se introduce en un recipiente muy grande con agua hirviendo.
 - a) Calcular la resistencia térmica del matraz.
 - b) Calcular la corriente térmica.
 - c) Calcular el tiempo que tarda el hielo en fundirse.

Datos: conductividad térmica del vidrio $\kappa=0.8\,\frac{W}{m\cdot K};$ calor latente de fusión del hielo $l_f=334.4\,\frac{kJ}{kg}.$

2. En un depósito se tiene $1 \,\mathrm{m}^3$ de agua a $5^{\rm o}\,\mathrm{C}$; se dispone de agua a $65^{\rm o}\,\mathrm{C}$ que sale por un grifo a razón de $100\,\mathrm{cm}^3/\mathrm{s}$. Calcular el tiempo que debe estar abierto el grifo para que la temperatura de la mezcla sea de $35^{\rm o}\,\mathrm{C}$. Ignórense pérdidas caloríficas.