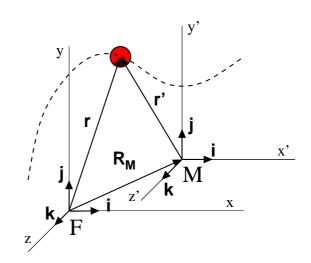
Descripción del movimiento en sistemas de referencia en traslación uniforme

OBJETIVOS


- Obtener las ecuaciones de transformación de las ecuaciones del movimiento entre dos sistemas con movimiento relativo de traslación uniforme (transformaciones de Galileo).
- Introducir la transformación de Lorentz.

DESARROLLO

Sean dos sistemas de referencia F y M que se mueven uno respecto del otro con velocidad constante.

En este caso, el movimiento relativo de uno respecto del otro será rectilíneo uniforme ($\vec{R}_M = \vec{v} \ t + \vec{R}_0$).

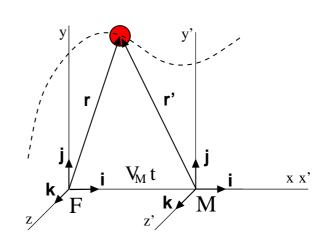
- M se mueve con \vec{V}_M respecto de F. (notar sin embargo que el moviemiento es relativo).
- Supongamos que en el instante inicial los dos orígenes coinciden por lo que $\vec{R}_M = \vec{V}_M \ t$.
- Llamamos \vec{r} y \vec{r} ' a la posición de una partícula vista desde F y M respectivamente
- Ademas se cumple la identidad vectorial: $\vec{r} = \vec{r}' + \vec{R}_M$.

La relación entre las posiciones vistas desde los dos sistemas de referencia es:

$$\vec{r} = \vec{R}_M + \vec{r}' = \vec{V}_M t + \vec{r}'$$

La relación entre velocidades se obtiene derivando esta expresión respecto del tiempo:

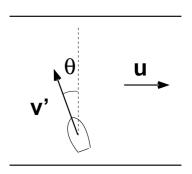
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(\vec{V}_M t + \vec{r}') = \vec{V}_M + \vec{v}'$$


Y para obtener la relación entre aceleraciones vuelvo a derivar:

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(\vec{V}_M + \vec{v}') = \vec{a}'$$

al ser \vec{V}_M constante.

En componentes:


Si elegimos los ejes de forma que x-x' y-y' z-z' sean paralelos y que \vec{V}_M este dirigido a lo largo del eje x, podemos expresar de forma sencilla las ecuaciones anteriores en componentes:

$$x = V_M t + x'$$
 $y = y'$ $z = z'$
 $v_x = V_M + v'_x$ $v_y = v'_y$ $v_z = v'_z$
 $a_x = a'_x$ $a_y = a'_y$ $a_z = a'_z$

Ejemplo: interpretación gráfica de $\vec{v} = \vec{V}_M + \vec{v}$

Una barca es capaz de desarrollar una velocidad v ' en aguas tranquilas. Sea u la velocidad del agua de un rio respecto de la orilla. ¿Con qué ángulo θ debemos dirigir la barca para conseguir atravesar el rio siguiendo la dirección perpendicular a la orilla?

