Apellidos:	Nombre:
Grupo:	
Fauino:	

Examen de Laboratorio (07-08, Q2)

1. (4p) En un experimento hemos medido los valores: $V = (2000 + /- 10) cm^3$, $V_0 = (12 + /- 1) litros$, $\rho_0 = (1350 + /- 50) kg/m^3$ y m=18.4 + /- 0.1) g. Queremos determinar la densidad de un cuerpo mediante la fórmula:

$$\rho = \frac{mV^2 + \rho_0 V_0^3}{0.01 \cdot V_0^3} \tag{1}$$

- a) Realiza la conversión de las variables medidas al S.I.
- b) Determina el valor de ρ (en el S.I.)
- c) Calcula el error asociado realizando la correspondiente propagación de errores.
- 2. (2p) En un laboratorio se mide el tiempo que tarda en enfocar un nuevo modelo de cámara digital. Los tiempos obtenidos en 6 mediciones son:

t(s)	
0.38	
0.31	
0.40	
0.37	
0.35	
0.32	

Si los cronómetros tienen un error de resolución de 0.01s, ¿qué tiempo de enfoque y qué error final deberíamos asociar a la cámara analizada?

3. (4p) Dos magnitudes físicas, h y t, se relacionan según: $h(t) = \frac{\alpha}{2} t^2 + \beta$ En un experimento realizado en el laboratorio se miden para h y t los siguientes valores:

t(s)	h(cm)
1.0	6.1
1.5	10.7
2.0	18.0
2.5	26.5
3.0	39.1
3.5	51.3

- a) ¿Qué función de h y t deberías de representar gráficamente, para obtener una dependencia lineal?
- b) Haz esta representación en papel milimetrado y calcula, a partir de la recta de regresión, los valores de α y β en este caso.